(1)∵y=[k/x](x>0,k是常数)的图象经过点A(1,4),
∴k=4,
∴反比例函数解析式为y=[4/x];
(2)∵点A(1,4),点B(m,n),
∴AC=4-n,BC=m-1,ON=n,OM=1,
∴[AC/NO]=[4−n/n]=[4/n]-1,
∵B(m,n)在y=[4/x]上,
∴[4/n]=m,
∴[AC/ON]=m-1,而[BC/MO]=[m−1/1],
∴[AC/NO]=[BC/MO],
∵∠ACB=∠NOM=90°,
∴△ACB∽△NOM;
(3)∵△ACB与△NOM的相似比为2,
∴m-1=2,
m=3,
∴B(3,[4/3]),
设AB所在直线解析式为y=kx+b,
∴
4
3=3k+b
4=k+b,
解得
k=−
4
3
b=
16
3,
∴解析式为y=-