已知tanA=4tanB,tan(A-B)的最大值.答案是tan(A-B)=(tanA-tanB)/(1+tanAtan
4个回答
(2tanB+1)^2≥0
4tan^2B+4tanB+1≥0
4tanB/(1+4tan^2B)≥1
所以 3tanB/(1+4tan^2B)小于等于3/4
相关问题
已知tana+tanb=2,tan(a+b)=4,tana
已知tana+tanb=2,tan(a+b)=4,tana
tan(A+B) = (tanA+tanB) / (1-tanA * tanB) = -1从而得到:tanA+tanB
化简[tan(a+b)-tana-tanb]/[tanatan(a+b)]的结果为
已知tanA+tanB=2,tan(A+B)=4,且tanA
求证:化简[tan(A+B)-tanA-tanB]÷[tanA·tan(A+B)]=tanB.
已知锐角A,B满足tan(A+B)=2tanA则tanB的最大值
已知,tan(A-B)/tanA-sin²C/sin²A=1,求证:tanA·tanB=tan&su
已知锐角A,B满足2tanA=tan(A+B),则tanB的最大值为______.
已知 sin(A+B)=1\2,sin(A-B)=1\3,求tan(A+B)-tanA-tanB\tanB*tanB*t