f(0) = 0 -> f(0) = loga(2 + b) = 0 -> 2 + b = 1 -> b = -1
f(x) = loga [(1 + x)/(1 - x)] (-1 < x 1 时,f(x)为单调增函数
f(x² - 2x + 1) + f(2x - 2) > 0 -> f(x² - 2x + 1) > f(2 - 2x) -> x² - 2x + 1 > 2 - 2x
-> x > 1 或 x < -1
综上
1 < x < 3/2
f(0) = 0 -> f(0) = loga(2 + b) = 0 -> 2 + b = 1 -> b = -1
f(x) = loga [(1 + x)/(1 - x)] (-1 < x 1 时,f(x)为单调增函数
f(x² - 2x + 1) + f(2x - 2) > 0 -> f(x² - 2x + 1) > f(2 - 2x) -> x² - 2x + 1 > 2 - 2x
-> x > 1 或 x < -1
综上
1 < x < 3/2