54
4/(1*2*3)+7/(2*3*4)+.+(3n+1)/[n(n+1)(n+2)]
1个回答
相关问题
-
Tn=4*2^1+7*2^2.(3n+1)*2^n 2Tn=4*2^2+7*2^3.(3n-2)*2^n+(3n+1)*
-
1+4+7+…+(3n+1)=(n+1)(3n+2)/2
-
1+4+7+...+3n-2=n(1+3n-2)/2
-
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
-
求lim(n→∞)[(1^3+4^3+7^3+……+(3n-2)^3]/{[1+4+7+……+(3n-2)]^2}
-
数学公式1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
-
1*2+2*3+3*4+...+n(n+1)=n(n+1)(n+2)/3
-
3*(1+2+3+4+.n)-n =3*(1+n)*n/2-n =(3n^2+n)/2
-
用数学归纳法证明:1/1*2*3+1/2*3*4+...+1/N(N+1)(N+2)=N(N+3)/4(N+1)(N+2
-
an=√(1*2)+√(2*3)+√(3*4)……+√[n(n+1)],n=1.2 3 4 ……证明n(n+1)/2<a