1
∵X+1/X=3
∴(x+1/x)²=x²+1/x²+2=9
∴x²+1/x²=7
∴(x²+1/x²)²=49
∴x⁴+1/x⁴+2=49
∴x⁴+1/x⁴=47
又x³+1/x³
=(x+1/x)(x²-1+1/x²)
=3(7-1)
=18
∴(X³+X-³+7)/(X⁴+X-⁴+3)
=(18+7)/(47+3)
=1/2
2
X⁴+ax²-bx+2能被X²+3X+2整除
则X⁴+ax²-bx+2=(X²+3X+2)(x²+cx+1)
而(X²+3X+2)(x²+cx+1)
=x⁴+(c+3)x³+(3+3c)x²+(2c+3)x+2
∴X⁴+ax²-bx+2=x⁴+(c+3)x³+(3+3c)x²+(2c+3)x+2
∴c+3=0 ,a=3+3c,-b=2c+3
∴c=-3,a=-6,b=3