f(x)=2cos²x+√3sin2x
=1+cos2x +√3sin2x
=2[(√3/2)sin2x+(1/2)cos2x]+1
=2sin(2x+π/6) +1
(1)最小正周期为T=2π/2=π.
(2)令 -π/2+2kπ≤2x+π/6≤π/2+2kπ
解得 -π/3+kπ≤x≤π/6+kπ,
所以单调递增区间为[-π/3+kπ,π/6+kπ],k是整数.
f(x)=2cos²x+√3sin2x
=1+cos2x +√3sin2x
=2[(√3/2)sin2x+(1/2)cos2x]+1
=2sin(2x+π/6) +1
(1)最小正周期为T=2π/2=π.
(2)令 -π/2+2kπ≤2x+π/6≤π/2+2kπ
解得 -π/3+kπ≤x≤π/6+kπ,
所以单调递增区间为[-π/3+kπ,π/6+kπ],k是整数.