(1)
设椭圆方程为x^2/a^2+y^2/b^2=1(a>b>0) ,左焦点为F.
|MF|=5m,则|FN|=2m,|MN|=7m,
设直线l是椭圆的左准线,e是椭圆的离心率,e=√3/3.
作MM1⊥l于A1,作NN1⊥ l于B1,NA⊥MM1于A,
根据椭圆的第二定义,则|MM1|=5m/e , |N1N|=2m/e ,
∴|AM|=|MM1| - |N1N|=3 m/e,
所以cos∠MFx= cos∠NMA
=|AM|/|MN|=(3 m/e)/(7m)
=3 /(7e)
=3√3/7
从而tan∠MFx=√66/9.
∴MN的斜率为√66/9.