解题思路:(1)将直线的方程:(2+λ)x+(1-2λ)y+4-3λ=0是过某两直线交点的直线系,故其一定通过某个定点,将其整理成直线系的标准形式,求两定直线的交点此点即为直线恒过的定点.
(2)当斜率不存在时,不合题意;当斜率存在时,设所求的直线方程为y+2=k(x+1),列出方程,进而得出交点.
证明:(1)直线方程为(2+λ)x+(1-2λ)y+4-3λ=0可化为:
∵λ(x-2y-3)+2x+y+4=0,
∴由
x−2y−3=0
2x+y+4=0得:
x=−1
y=−2,
∴直线l恒过定点M(-1,-2).
(2)当斜率不存在时,不合题意;
当斜率存在时,设所求直线l1的方程为y+2=k(x+1),
直线l1与x轴、y轴交于A、B两点,则A([2/k]-1,0)B(0,k-2).
∵AB的中点为M,
∴
2
k−1=−2
k−2=−4,
解得k=-2.
∴所求直线l1的方程为y+2=-2(x+1),
即:2x+y+4=0.
所求直线l1的方程为2x+y+4=0
点评:
本题考点: 直线的一般式方程.
考点点评: 本题给出动直线恒过定点,要我们求直线恒过的定点坐标,中点的坐标,着重考查了直线的方程及点与直线位置关系等知识,属于中档题.