二次函数那部分我一点不懂!学霸们给我指点指点可好??

1个回答

  • 二次函数定义   一般地,我们把形如y=ax^2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。注意:“变量”不同于“未知数”,不能说“二次函数是指未知数的最高次数为二次的多项式函数”。“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在一定范围内任意取值。在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。从函数的定义也可看出二者的差别.如同函数不等于函数关系。二次函数的几种表达式 一般式   y=ax^2+bx+c(a≠0,a、b、c为常数), 顶点坐标为 [-b/2a,(4ac-b^2)/4a]   把三个点代入式子得出一个三元一次方程组,就能解出a、b、c的值。 顶点式   y=a(x-h)^2+k(a≠0,a、h、k为常数),顶点坐标为(h,k),对称轴为x=h,顶点的位置特征和图像的开口方向与函数y=ax^2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式交点式   y=a(x-x)(x-x) (a≠0) [仅限于与x轴即y=0有交点A(x,0)和 B(x,0)的抛物线,即b^2-4ac≥0] . 已知抛物线与x轴即y=0有交点A(x,0)和 B(x,0),我们可设y=a(x-x)(x-x),然后把第三点代入x、y中便可求出a。由一般式变为交点式的步骤:  X1+x2=-b/a x1·x2=c/a   y=ax^2+bx+c   =a(x^2+b/ax+c/a)   =a[﹙x^2-(x+x2)x+x1x2. =a(x-x1)(x-x2)   重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;a<0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。   二次函数图像与X轴交点的情况   当=b^2-4ac>0时,函数图像与x轴有两个交点。   当=b^2-4ac=0时,函数图像与x轴只有一个交点。   当=b^2-4ac<0时,函数图像与x轴没有交点。 二次函数图像   在平面直角坐标系中作出二次函数y=ax^2+bx+c的图像,可以看出,二次函数的图像是一条永无止境的抛物线。 如果所画图形准确无误,那么二次函数图像将是由一般式平移得到的。   注意:草图要有 :   1. 本身图像,旁边注明函数。  2. 画出对称轴,并注明直线X=什么 (X= -b/2a)  3. 与X轴交点坐标 (x1,y1);(x2, y2),与Y轴交点坐标(0,c), 顶点坐标(-b/2a, (4ac-b^2/4a). 轴对称   二次函数图像是轴对称图形。对称轴为直线x=-b/2a   对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。   特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。   a,b同号,对称轴在y轴左侧   b=0,对称轴是y轴   a,b异号,对称轴在y轴右侧 顶点   二次函数图像有一个顶点P,坐标为P ( h,k )   当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)^2+k。   h=-b/2a, k=(4ac-b^2)/4a。 开口   二次项系数a决定二次函数图像的开口方向和大小。   当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。   |a|越大,则二次函数图像的开口越小。 决定对称轴位置的因素   一次项系数b和二次项系数a共同决定对称轴的位置。   当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以 b/2a要大于0,所以a、b要同号   当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号   可简单记忆为同左异右,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0 ),对称轴在y轴右。   事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。 决定与y轴交点的因素   常数项c决定二次函数图像与y轴交点。   二次函数图像与y轴交于(0,C)   注意:顶点坐标为(h,k), 与y轴交于(0,C)。 与x轴交点个数   a<0;k>0或a>0;k<0时,二次函数图像与x轴有2个交点。   k=0时,二次函数图像与x轴只有1个交点。   a<0;k<0或a>0,k>0时,二次函数图像与X轴无交点。   当a>0时,函数在x=h处取得最小值ymin=k,在xh范围内是增函数(即y随x的变大而变小),二次函数图像的开口向上,函数的值域是y>k   当a<0时,函数在x=h处取得最大值ymax=k,在xh范围内是减函数(即y随x的变大而变大),二次函数图像的开口向下,函数的值域是y0,则抛物线开口朝上;a<0,则抛物线开口朝下;   极值点:(-b/2a,(4ac-b2;)/4a);   Δ=b2-4ac,   Δ>0,图象与x轴交于两点:   ([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);   Δ=0,图象与x轴交于一点:   (-b/2a,0);   Δ<0,图象与x轴无交点;   特殊地,Δ=4,顶点与两零点围成的三角形为等腰直角三角形;Δ=12,顶点与两零点围成的三角形为等边三角形。   y=a(x-h)2+k[顶点式]   此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a   y=a(x-x1)(x-x2)[交点式(双根式)](a≠0)   对称轴X=(X1+X2)/2 当a>0 且X(X1+X2)/2时,Y随X的增大而增大,当a>0且X(X1+X2)/2时Y随X   的增大而减小   此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连   用)。   交点式是Y=A(X-X1)(X-X2) 知道两个x轴交点和另一个点坐标设交点式。两交点X值就是相应X1 X2值。  增减性   当a>0且y在对称轴右侧时,y随x增大而增大,y在对称轴左侧则相反   当a<0且y在对称轴右侧时,y随x增大而减小,y在对称轴左侧则相反 两个关联函数图像   对称关系   对于一般式:   y=ax^2+bx+c与y=ax^2-bx+c两图像关于y轴对称   y=ax^2+bx+c与y=-ax^2-bx-c两图像关于x轴对称   y=ax^2+bx+c与y=-ax^2+bx+c-2b^2*|a|/4a^2关于顶点对称   y=ax^2+bx+c与y=-ax^2+bx-c关于原点对称。   对于顶点式:   y=a(x-h)^2+k与y=a(x+h)^2+k两图像关于y轴对称,即顶点(h,k)和(-h,k)关于y轴对称,横坐标相反、纵坐标相同。   y=a(x-h)^2+k与y=-a(x-h)^2-k两图像关于x轴对称,即顶点(h,k)和(h,-k)关于y轴对称,横坐标相同、纵坐标相反。   y=a(x-h)^2+k与y=-a(x-h)^2+k关于顶点对称,即顶点(h,k)和(h,k)相同,开口方向相反。   y=a(x-h)^2+k与y=-a(x+h)^2-k关于原点对称,即顶点(h,k)和(-h,-k)关于原点对称,横坐标、纵坐标都相反。   (其实就是对f(x)来说f(-x),-f(x),-f(-x)的情况) 与一元二次方程的关系   特别地,二次函数(以下称函数)y=ax^2+bx+c,   当y=0时,二次函数为关于x的一元二次方程(以下称方程),   即ax^2+bx+c=0   此时,函数图像与x轴有无交点即方程有无实数根。   函数与x轴交点的横坐标即为方程的根。   1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:   解析式 顶点坐标 对 称 轴   y=ax^2(0,0) x=0   y=ax^2+K (0,K) x=0   y=a(x-h)^2(h,0) x=h   y=a(x-h)^2+k (h,k) x=h   y=ax^2+bx+c (-b/2a,(4ac-b^2);/4a)x=-b/2a   当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,   当h<0时,则向左平行移动|h|个单位得到。   当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k(h>0,k>0)的图象   当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位,就可得到y=a(x-h)^2+k(h>0,k<0)的图象   当h<0,k>0时,将抛物线y=ax^2向左平行移动|h|个单位,再向上移动k个单位,就可得到y=a(x+h)^2+k(h<0,k>0)的图象   当h<0,k<0时,将抛物线y=ax^2向左平行移动|h|个单位,再向下移动|k|个单位,就可得到y=a(x+h)^2+k(h<0,k<0)的图象   在向上或向下。