解题思路:根据等边三角形的性质求得其等边三角形的边心距,即是正方形的半径,再根据正方形的性质求得正方形的边长,进一步求出其面积.
等边△ABC的边长为a,
∵点O为△ABC的内心,
∴OE⊥AB,AE=BE=[a/2],∠EAO=30°,
∴OE=AE•tan∠EAO=
3
6a,
则正方形的边长是2OE•cos45°=2×
2
2OE=2×
2
2×
3
6a=
6
6a.
则正方形的面积是:[1/6]a2.
点评:
本题考点: 正多边形和圆.
考点点评: 此类计算题主要是构造一个由正多边形的边心距、半径和半边组成的直角三角形.该直角三角形的半边所对的角即是正多边形的中心角的一半,即[180°/n].根据锐角三角函数的概念进行求解.