tan(a+b)=(tana+tanb)/(1-tanatanb)
=(1/5+3/11)/(1-1/5*3/11)
=(11+3*5)/55/(1-3/55)
=26/(55-3)=1/2
tan(a+b+c)=[tan(a+b)+tanc]/[1-tan(a+b)tanc]
=(1/2+1/3)/(1-1/2*1/3)
=(3+2)/(6-1)=1
因为a、b、c均为锐角
且tana=1/5
tan(a+b)=(tana+tanb)/(1-tanatanb)
=(1/5+3/11)/(1-1/5*3/11)
=(11+3*5)/55/(1-3/55)
=26/(55-3)=1/2
tan(a+b+c)=[tan(a+b)+tanc]/[1-tan(a+b)tanc]
=(1/2+1/3)/(1-1/2*1/3)
=(3+2)/(6-1)=1
因为a、b、c均为锐角
且tana=1/5