题目缺少条件,估计原题中应该有条件:------------------OA=OB.
证明:取AE的中点M,AB的中点N,连接DM,ON.
∵⊿ADE与⊿AOB均为等腰直角三角形.
∴∠DMP=∠ONB=90°;DM=AE/2,ON=AB/2;AM=ME,AN=BN.
P为BE的中点,则ON=AB/2=ME+PE=PM;
又PN=BN-BP=AB/2-BE/2=(AB-BE)/2=AE/2=DM.
∴⊿ONP≌⊿PMD(SAS),PD=PO;∠OPN=∠PDM.
∴∠DPM+∠OPN=∠DPM+∠PDM=90°,得PD⊥PO.