设数列{a n } 的前n项和为S n ,已知S 1 =1, S n+1 S n = n+c n (c为常数,c≠1,n

1个回答

  • (1)∵S 1=1,

    S n+1

    S n =

    n+c

    n ,

    ∴a n+1=S n+1-S n=

    c

    n S n ,-------------------------(2分)

    ∴a 1=S 1=1,a 2=cS 1=c,a 3=

    c

    2 S 2 =

    c

    2 (1+c) .

    ∵a 1,a 2,a 3成等差数列,

    ∴2a 2=a 1+a 3

    即2c=1+

    c(1+c)

    2 ,

    ∴c 2-3c+2=0.---------------------------------------------------(5分)

    解得c=2,或c=1(舍去).-----------------------------------------------------------------(6分)

    (2)∵)∵S 1=1,

    S n+1

    S n =

    n+2

    n ,

    ∴S n=S 1×

    S 2

    S 1 ×…×

    S n

    S n-1 =1×

    3

    1 ×

    4

    2 ×…×

    n+1

    n-1 =

    n(1+n)

    2 (n≥2),-------------------(8分)

    ∴a n=S n-S n-1=

    n(1+n)

    2 -

    n(n-1)

    2 =n(n≥2),------------------------------------------(9分)

    又a 1=1,∴数列{a n}的通项公式是a n=n(n∈N *).-----------------------------------(10分)

    (3)证明:∵数列{b n}是首项为1,公比为c的等比数列,

    ∴b n=c n-1.---------(11分)

    ∵A 2n=a 1b 1+a 2b 2+…+a 2nb 2n,B 2n=a 1b 1-a 2b 2+…-a 2nb 2n

    ∴A 2n+B 2n=2(a 1b 1+a 3b 3+…+a 2n-1b 2n-1),①

    A 2n-B 2n=2(a 2b 2+a 4b 4+…+a 2nb 2n),②

    ①式两边乘以c得 c(A 2n+B 2n)=2(a 1b 2+a 3b 4+…+a 2n-1b 2n)③

    由②③得(1-c)A 2n-(1+c)B 2n=A 2n-B 2n-c(A 2n+B 2n

    =2[(a 2-a 1)b 2+(a 4-a 3)b 4+…+(a 2n-a 2n-1)b 2n]

    =2(c+c 3+…+c 2n-1

    =

    2c(1- c 2n )

    1- c 2 ,

    将c=2代入上式,得A 2n+3B 2n=

    4

    3 (1-4 n).-----------------------------------------(14分)

    另证:先用错位相减法求A n,B n,再验证A 2n+3B 2n=

    4

    3 (1-4 n).

    ∵数列{b n}是首项为1,公比为c=2的等比数列,∴ b n = 2 n-1 .--------------(11分)

    又是a n=n(n∈N *),所以A 2n=1×2 0+2×2 1+…+2n×2 2n-1

    B 2n=1×2 0-2×2 1+…-2n×2 2n-1

    将①乘以2得:

    2A 2n=1×2 1+2×2 2+…+2n×2 2n

    ①-③得:-A 2n=2 0+2 1+…+2 2n-1-2n×2 2n=

    1(1- 2 2n )

    1-2 -2n×2 2n

    整理得:A 2n=4 n(2n-1)+1-------------------------(12分)

    将②乘以-2得:-2B 2n=-1×2 1+2×2 2-…+2n×2 2n

    ②-④整理得:3B 2n=2 0-2 1+…+2 2n-1-2n×2 2n=

    1(1- 2 2n )

    1-(-2) -2n×2 2n=

    1 -4 n

    3 -2n×4 n,(13分)

    ∴A 2n+3B 2n=

    4

    3 (1-4 n)-----------------------------------------(14分)