(1)∵S 1=1,
S n+1
S n =
n+c
n ,
∴a n+1=S n+1-S n=
c
n S n ,-------------------------(2分)
∴a 1=S 1=1,a 2=cS 1=c,a 3=
c
2 S 2 =
c
2 (1+c) .
∵a 1,a 2,a 3成等差数列,
∴2a 2=a 1+a 3,
即2c=1+
c(1+c)
2 ,
∴c 2-3c+2=0.---------------------------------------------------(5分)
解得c=2,或c=1(舍去).-----------------------------------------------------------------(6分)
(2)∵)∵S 1=1,
S n+1
S n =
n+2
n ,
∴S n=S 1×
S 2
S 1 ×…×
S n
S n-1 =1×
3
1 ×
4
2 ×…×
n+1
n-1 =
n(1+n)
2 (n≥2),-------------------(8分)
∴a n=S n-S n-1=
n(1+n)
2 -
n(n-1)
2 =n(n≥2),------------------------------------------(9分)
又a 1=1,∴数列{a n}的通项公式是a n=n(n∈N *).-----------------------------------(10分)
(3)证明:∵数列{b n}是首项为1,公比为c的等比数列,
∴b n=c n-1.---------(11分)
∵A 2n=a 1b 1+a 2b 2+…+a 2nb 2n,B 2n=a 1b 1-a 2b 2+…-a 2nb 2n,
∴A 2n+B 2n=2(a 1b 1+a 3b 3+…+a 2n-1b 2n-1),①
A 2n-B 2n=2(a 2b 2+a 4b 4+…+a 2nb 2n),②
①式两边乘以c得 c(A 2n+B 2n)=2(a 1b 2+a 3b 4+…+a 2n-1b 2n)③
由②③得(1-c)A 2n-(1+c)B 2n=A 2n-B 2n-c(A 2n+B 2n)
=2[(a 2-a 1)b 2+(a 4-a 3)b 4+…+(a 2n-a 2n-1)b 2n]
=2(c+c 3+…+c 2n-1)
=
2c(1- c 2n )
1- c 2 ,
将c=2代入上式,得A 2n+3B 2n=
4
3 (1-4 n).-----------------------------------------(14分)
另证:先用错位相减法求A n,B n,再验证A 2n+3B 2n=
4
3 (1-4 n).
∵数列{b n}是首项为1,公比为c=2的等比数列,∴ b n = 2 n-1 .--------------(11分)
又是a n=n(n∈N *),所以A 2n=1×2 0+2×2 1+…+2n×2 2n-1①
B 2n=1×2 0-2×2 1+…-2n×2 2n-1②
将①乘以2得:
2A 2n=1×2 1+2×2 2+…+2n×2 2n③
①-③得:-A 2n=2 0+2 1+…+2 2n-1-2n×2 2n=
1(1- 2 2n )
1-2 -2n×2 2n,
整理得:A 2n=4 n(2n-1)+1-------------------------(12分)
将②乘以-2得:-2B 2n=-1×2 1+2×2 2-…+2n×2 2n④
②-④整理得:3B 2n=2 0-2 1+…+2 2n-1-2n×2 2n=
1(1- 2 2n )
1-(-2) -2n×2 2n=
1 -4 n
3 -2n×4 n,(13分)
∴A 2n+3B 2n=
4
3 (1-4 n)-----------------------------------------(14分)