已知平行六面体ABCD-A1B1C1D1的底面边长为a的正方形;侧棱AA1的长为b,且∠AA1B1=∠AA1D1=60°,求平行六面体的体积
解析:过A作AE⊥面A1B1C1D1
∵平行六面体ABCD-A1B1C1D1
∴垂足E定在底面A1B1C1D1对角线A1C1上;
过A作AF⊥A1B1交A1B1于F,连接EF
∵底面为边长=a的正方形
∴EF为AF在底面中的投影==>EF⊥A1B1,∠EA1F=45°
∵∠AA1B1=∠AA1D1=60°,AA1=b
∴A1F=b/2==>EF=A1F=b/2,AF= AA1*sin60°=√3b/2
AE=√(AF^2-EF^2)= √2b/2
∴体积V=AE*a^2=√2b/2*a^2=√2a^2b/2
斜三棱柱ABC-A1B1C1中,△ABC为正三角形,∠A1AB=∠A1AC=45°,AB=a,AA1=b,求三棱柱的体积
解析:过A1作A1E⊥面ABC
∵斜三棱柱ABC-A1B1C1,△ABC为正三角形
∴垂足E定在底面ABC的角BAC的平分线上;
过A1作A1F⊥AB交AB于F,连接EF
∵底面为边长=a的正三角形
∴EF为A1F在底面中的投影==>EF⊥AB,∠EAF=30°
∵∠A1AB=∠A1AC=45°,AA1=b
∴AF=√2b/2==>AF=A1F=√2b/2,EF= AF*tan30°=√6b/6
AE=√(AF^2-EF^2)= √3b/3
∴体积V=AE*√3/4*a^2=√3b/3*√3/4*a^2=a^2b/4