设L:y=mx,代入椭圆方程得b^2x^2+a^2m^2x^2=a^2b^2,
∴x^2=a^2b^2/(a^2m^2+b^2),
∴交点M,N的横坐标x=土ab/√(a^2m^2+b^2),纵坐标y=土abm/√(a^2m^2+b^2),
设P(x,y)是椭圆x^2/a^2+y^2/b^2=1上任意一点,则y^2=(a^2-x^2)b^2/a^2,
kPM*kPN=[y-abm/√(a^2m^2+b^2)][y+abm/√(a^2m^2+b^2)]/{[x-ab/√(a^2m^2+b^2)][x+ab/√(a^2m^2+b^2)]}
=[y^2-a^2b^2m^2/(a^2m^2+b^2)]/[x^2-a^2b^2/(a^2m^2+b^2)]
=[(a^2m^2+b^2)y^2-a^2b^2m^2]/[(a^2m^2+b^2)x^2-a^2b^2]
=[(a^2m^2+b^2)(a^2-x^2)b^2-a^4b^2m^2]/{a^2[(a^2m^2+b^2)x^2-a^2b^2]}
=b^2[a^2b^2-(a^2m^2+b^2)x^2]/{a^2[(a^2m^2+b^2)x^2-a^2b^2]}
=-b^2/a^2,
与点P及直线L无关.