cos(α+β)cos(α-β)=1/3
[cosacosb-sinasinb][cosacosb+sinasinb]=1/3
(cosacosb)²-(sinasinb)²=1/3
cos²a(1-sin²b)-sin²b(1-cos²a)=1/3
cos²a-cos²asin²b-sin²b+sin²acos²b=1/3
cos²a-sin²b=1/3
cos(α+β)cos(α-β)=1/3
[cosacosb-sinasinb][cosacosb+sinasinb]=1/3
(cosacosb)²-(sinasinb)²=1/3
cos²a(1-sin²b)-sin²b(1-cos²a)=1/3
cos²a-cos²asin²b-sin²b+sin²acos²b=1/3
cos²a-sin²b=1/3