昨日计算匆忙,有个小错误,现纠正如下:
从0,1,2,3,4,5中取四个数共有5种取法,能排成84个无重复数字的四位数,如下:
①不要0,用1,2,3,4排,有24个数.
②不要1,用0,2,3,4排,有15个数.
③不要2,用0,1,3,4排,有15个数.
④不要3,用0,1,2,4排,有15个数.
⑤不要4,用0,1,2,3排,有15个数.
在①的所有数中,1、2、3、4在个、十、百、千位出现的次数都为6次.
在②的所有数中,2、3、4在千位出现的次数都为5次,但在百、十、个位出现的次数只有4次.(0只能排在个十百位.)
在③的所有数中,1、3、4在千位出现的次数都为5次,但在百、十、个位出现的次数只有4次.(0只能排在个十百位.)
在④的所有数中,1、2、4在千位出现的次数都为5次,但在百、十、个位出现的次数只有4次.(0只能排在个十百位.)
在⑤的所有数中,1、2、3在千位出现的次数都为5次,但在百、十、个位出现的次数只有4次.(0只能排在个十百位.)
那么,在这84个数中,1、2、3、4在千、百、十、个位出现的次数分别都是21次、20次、20次、20次;
所以这84个数的和为:
千位:21×(1+2+3+4)×1000=210000;
百位:20×(1+2+3+4)×100=20000;
十位:20×(1+2+3+4)×10=2000;
个位:20×(1+2+3+4)×1=200;
总和:210000+20000+2000+200=232200.