1、∫ x/√(a²+x²) dx
= ∫ d(x²/2)/√(a²+x²)
= (1/2)∫ d(x²+a²)/√(a²+x²)
= (1/2) * 2√(a²+x²) + C
= √(a²+x²) + C
2、∫ 1/√[x(a²-x²)] dx 无解
是∫ 1/[x√(a²-x²)] dx?
令x = a*sinz 则 dx = a*cosz dz
cscz = a/x,cotz = √(a²-x²)/x
∫ 1/[x√(a²-x²)] dx = ∫ a*cosz/(a*sinz*a*cosz) dz
= (1/a)∫ cscz dz
= (1/a) * -ln|cscz + cotz| + C
= (-1/a) * ln|[a+√(a²-x²)] / x| + C
= (-1/a) * [ln|a+√(a²-x²)| - ln|x|] + C
= [ln|x| - ln|a+√(a²-x²)|] / a + C
3、∫ √(e^x-2) dx
令u = √(e^x-2),e^x = 2+u²,x = ln(2+u²),dx = 2u/(2+u²) du
原式 = 2∫ u²/(2+u²) du
= 2∫ (2+u²-2)/(2+u²) du
= 2∫ du - 4∫ du/(2+u²)
= u - 4*(1/√2)*arctan(u/√2) + C
= √(e^x-2) - 2√2*arctan[√(e^x-2) / √2] + C