1.∫x/√(a^2+x^2)dx

1个回答

  • 1、∫ x/√(a²+x²) dx

    = ∫ d(x²/2)/√(a²+x²)

    = (1/2)∫ d(x²+a²)/√(a²+x²)

    = (1/2) * 2√(a²+x²) + C

    = √(a²+x²) + C

    2、∫ 1/√[x(a²-x²)] dx 无解

    是∫ 1/[x√(a²-x²)] dx?

    令x = a*sinz 则 dx = a*cosz dz

    cscz = a/x,cotz = √(a²-x²)/x

    ∫ 1/[x√(a²-x²)] dx = ∫ a*cosz/(a*sinz*a*cosz) dz

    = (1/a)∫ cscz dz

    = (1/a) * -ln|cscz + cotz| + C

    = (-1/a) * ln|[a+√(a²-x²)] / x| + C

    = (-1/a) * [ln|a+√(a²-x²)| - ln|x|] + C

    = [ln|x| - ln|a+√(a²-x²)|] / a + C

    3、∫ √(e^x-2) dx

    令u = √(e^x-2),e^x = 2+u²,x = ln(2+u²),dx = 2u/(2+u²) du

    原式 = 2∫ u²/(2+u²) du

    = 2∫ (2+u²-2)/(2+u²) du

    = 2∫ du - 4∫ du/(2+u²)

    = u - 4*(1/√2)*arctan(u/√2) + C

    = √(e^x-2) - 2√2*arctan[√(e^x-2) / √2] + C