1、
b(n+1)=根号下(a(n+1)a(n+2))
b(n+1)/bn=根号下(a(n+2)/an)=q
故a(n+2)=an*q^2
2、
c(n+1)=a(2n-1+2)+2a(2n+2)
c(n)=a(2n-1)+2a(2n)
由证明(1)可得
c(n+1)/c(n)=[a(2n-1)*q^2+2a(2n)*q^2]/[a(2n-1)+2a(2n)]=q^2
3、
a(1)=1,a(2)=2,由(1)得,a(3)=q^2,a(4)=2q^2,一次类推a(2n-1)=q^(2n-2),a(2n)=2q^(2n-2)
所以求和为3/2(1+1/q^2+1/q^4+……+1/q^(2n-2))=3/2[(q^2n-1)/(q^2-1)q^(2n-2)]