假设根号2是有理数
有理数可以写成一个最简分数
及两个互质的整数相除的形式
即根号2=p/q
pq互质
两边平方
2=p^2/q^2
p^2=2q^2
所以p^2是偶数
则p是偶数
令p=2m
则4m^2=2q^2
q^2=2m^2
同理可得q是偶数
这和pq互质矛盾
所以假设错误
所以根号2是无理数
假设根号2是有理数
有理数可以写成一个最简分数
及两个互质的整数相除的形式
即根号2=p/q
pq互质
两边平方
2=p^2/q^2
p^2=2q^2
所以p^2是偶数
则p是偶数
令p=2m
则4m^2=2q^2
q^2=2m^2
同理可得q是偶数
这和pq互质矛盾
所以假设错误
所以根号2是无理数