解题思路:函数
y=
1
x
2
−2bx+
c
2
的自变量x取值范围是一切实数,即分母一定不等于0,即方程x2-2bx+c2=0无解.即△=4b2-4c2<0,即可解得b、c的关系.
∵函数y=
1
x2−2bx+c2的自变量x取值范围是一切实数,
∴分母一定不等于0,
∴x2-2bx+c2=0无解,
即△=4b2-4c2=4(b+c)(b-c)<0,
解得:c<b<-c或-c<b<c.
当c>b>0时,一定满足要求上面要求.
故选D.
点评:
本题考点: 函数自变量的取值范围.
考点点评: 本题是函数有意义的条件与一元二次方程的解相结合的问题.函数表达式是分式时,考虑分式的分母不能为0.