已知等差数列{a n }的前n项和为S n ,且a 3 =5,S 15 =225.数列{b n }是等比数列,b 3 =

1个回答

  • (I)公差为d,

    a 1 +2d=5

    15a 1 +15×7d=225 ,

    a 1 =1

    d=2 故a n=2n-1(n=1,2,3,…).

    设等比数列b n的公比为q,则

    b 3 =8

    b 3

    q • b 3 q 2 =128 ,∴b 3=8,q=2

    ∴b n=b 3•q n-3=2 n(n=1,2,3,…).

    (II)∵c n=(2n-1)•2 n∵T n=2+3•2 2+5•2 3+…+(2n-1)•2 n

    2T n=2 2+3•2 3+5•2 4+…+(2n-3)•2 n+(2n-1)•2 n+1

    作差:-T n=2+2 3+2 4+2 5+…+2 n+1-(2n-1)•2 n+1

    = 2+

    2 3 (1- 2 n-1 )

    1-2 -(2n-1)• 2 n+1

    =2+2 3(2 n-1-1)-(2n-1)•2 n+1=2+2 n+2-8-2 n+2n+2 n+1=-6-2 n+1(2n-3)

    ∴T N=(2n-3)•2 n+1+6(n=1,2,3,…).