(I)公差为d,
则
a 1 +2d=5
15a 1 +15×7d=225 ,
∴
a 1 =1
d=2 故a n=2n-1(n=1,2,3,…).
设等比数列b n的公比为q,则
b 3 =8
b 3
q • b 3 q 2 =128 ,∴b 3=8,q=2
∴b n=b 3•q n-3=2 n(n=1,2,3,…).
(II)∵c n=(2n-1)•2 n∵T n=2+3•2 2+5•2 3+…+(2n-1)•2 n
2T n=2 2+3•2 3+5•2 4+…+(2n-3)•2 n+(2n-1)•2 n+1
作差:-T n=2+2 3+2 4+2 5+…+2 n+1-(2n-1)•2 n+1
= 2+
2 3 (1- 2 n-1 )
1-2 -(2n-1)• 2 n+1
=2+2 3(2 n-1-1)-(2n-1)•2 n+1=2+2 n+2-8-2 n+2n+2 n+1=-6-2 n+1(2n-3)
∴T N=(2n-3)•2 n+1+6(n=1,2,3,…).