我要一篇关于勾股定理的平面图形论文520字的

1个回答

  • 图片:http://image.baidu.com/i?tn=baiduimage&ct=201326592&lm=-1&cl=2&word=%B9%B4%B9%C9%B6%A8%C0%ED&t=3

    最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明.在这幅“勾股圆方图”中,以弦为边长玫秸?叫蜛BDE是由4个相等的直角三角形再加上中间的那个小正方形组成的.每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2.于是便可得如下的式子:

    4×(ab/2)+(b-a)2=c2

    化简后便可得:

    a2+b2=c2

    亦即:

    c=(a2+b2)(1/2)

    稍后一点的刘徽在证明勾股定理时也是用以形证数的方法,刘徽用了“出入相补法”即剪贴证明法,他把勾股为边的正方形上的某些区域剪下来(出),移到以弦为边的正方形的空白区域内(入),结果刚好填满,完全用图解法就解决了问题.

    再给出两种

    1.做直角三角形的高,然后用相似三角形比例做出.

    2.把直角三角形内接于圆.然后扩张做出一矩形.最后用一下托勒密定理.