作差
x^6+1-(x^4+x^2)
=(x^6-x^4)-(x^2-1)
=x^4(x^2-1)-(x^2-1)
=(x^4-1)(x^2-1)
=(x^2-1)(x^2+1)(x^2-1)
=(x^2+1)(x^2-1)^2≥0
所以x^6+1≥x^4+x^2
当x=±1时,取等号
作差
x^6+1-(x^4+x^2)
=(x^6-x^4)-(x^2-1)
=x^4(x^2-1)-(x^2-1)
=(x^4-1)(x^2-1)
=(x^2-1)(x^2+1)(x^2-1)
=(x^2+1)(x^2-1)^2≥0
所以x^6+1≥x^4+x^2
当x=±1时,取等号