(p→q)∧(q→r)
=(~p∨q)∧(~q∨r)
=(~p∧(~q∨r))∨(q∧(~q∨r))
=((~p∧~q)∨(~p∧r))∨((q∧~q)∨(q∧r))
=(~p∧~q)∨(~p∧r)∨(0)∨(q∧r)
=(~p∧~q)∨(~p∨q)∧r)
=(~p∨((~p∨q)∧r))∧(~q∨((~p∨q)∧r))
= p∨(~p∨q))∧(~p∨r))∧(~q∨(~p∨q))∧(~q∨r)
=(~p∨q)∧(~p∨r))∧(~q∨r)
=((~p∨q)∧(~q∨r) ))∧(~p∨r)
即:
((p→q)∧(q→r)) = ((p→q)∧(q→r))∧( p→r)
下面,为书写方便,设 A=(p→q)∧(q→r),B= p→r
由上有 A=A∧B
于是 A∨B=~(A∧B)∨B=~A∨~B∨B = 1
即 A=> B 恒成立.
所以:(p→q)∧(q→r)=> p→