此乃欧拉方程。令 x=e^t, 则
y'=(dy/dt)(dt/dx)=e^(-t)dy/dt=(1/x)dy/dt,
y''=(d/dx)[(1/x)dy/dt] = (-1/x^2)dy/dt+(1/x)(d^2y/dt^2)(dt/dx)
= (1/x^2)[d^2y/dt^2-dy/dt],
代入原微分方程,得 d^2y/dt^2-4dy/dt-...
此乃欧拉方程。令 x=e^t, 则
y'=(dy/dt)(dt/dx)=e^(-t)dy/dt=(1/x)dy/dt,
y''=(d/dx)[(1/x)dy/dt] = (-1/x^2)dy/dt+(1/x)(d^2y/dt^2)(dt/dx)
= (1/x^2)[d^2y/dt^2-dy/dt],
代入原微分方程,得 d^2y/dt^2-4dy/dt-...