解题思路:先联立直线与椭圆方程,化简得到一个关于x的一元二次方程,因为直线y=x+m与椭圆4x2+y2=16有两个不同的交点,所以这个一元二次方程有两个不同的解,所以判别式大于0,由此即可得到m的范围.
由
y=x+m
4x2+y2=16可得,,5x2+2mx+m2-16=0
∵直线y=x+m与椭圆4x2+y2=16有两个不同的交点,
∴△>0,即(2m)2-4×5(m2-16)>0
∴-2
5<m<2
5
即 m范围为{m|-2
5<m<2
5}
点评:
本题考点: 直线与圆锥曲线的关系.
考点点评: 本题主要考查直线与椭圆相交交点的求法,以及根据一元二次方程根的判断来判断直线与椭圆交点个数.