x属于(0,π),因此sinx不等于0
sin(π/2-2x)=cos2x=1-2(sinx)^2,cos(π+x)=-cosx,所以:
√3sinx-(sin( π/2-2x))/(cos( π+x))*cosx
=√3sinx-cos2x/(-cosx)*cosx
=√3sinx+cos2x
=√3sinx+1-2(sinx)^2=1
即:sinx(sinx-√3/2)=0
解得:sinx=0(不合,舍去),sinx=√3/2
由sinx=√3/2且x属于(0,π),易求得:x=π/3或x=2π/3