解题思路:(1)因为AB=8,AD=2,所以BD=AB-AD=6,又因为在Rt△BDE中∠BDE=90°-∠B=30°,根据直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半可得BE=[1/2]BD=3,所以CE=BC-BE=5,同理可知,在Rt△CFE中∠CEF=90°-∠C=30°,CF=[1/2]CE=[5/2],则可根据AF=AC-FC求得结果;
(2)因为∠BDE=∠CFE=90°,∠B=∠C,DE=EF,所以△BDE≌△CFE,则有BE=CF=[1/2]EC,BE=[1/3]BC=[8/3],BD=2BE=[16/3],则有AD=AB-BD=[8/3]时,DE=EF.
(1)∵AB=8,AD=2
∴BD=AB-AD=6
在Rt△BDE中
∠BDE=90°-∠B=30°
∴BE=[1/2]BD=3
∴CE=BC-BE=5
在Rt△CFE中
∠CEF=90°-∠C=30°
∴CF=[1/2]CE=[5/2]
∴AF=AC-FC=[11/2];
(2)在△BDE和△EFC中
∠BED=∠CFE=90°
∠B=∠C
DE=EF,
∴△BDE≌△CFE(AAS)
∴BE=CF
∴BE=CF=[1/2]EC
∴BE=[1/3]BC=[8/3]
∴BD=2BE=[16/3]
∴AD=AB-BD=[8/3]
∴AD=[8/3]时,DE=EF.
点评:
本题考点: 全等三角形的判定;全等三角形的性质.
考点点评: 本题把全等三角形的判定和性质结合求解,考查学生综合运用数学知识的能力.充分掌握和理解直角三角形中的一些特殊的对应关系并灵活运用可解得此题.