属于裂项求和的方法
n/(n+1)!=[(n+1)-1]/(n+1)!=(n+1)/(n+1)!-1/(n+1)!=1/n!-1/(n+1)!
∴ Sn=1/2!+2/3!+3/4!+.+n/(n+1)!
=(1/1!-1/2!)+(1/2!-1/3!)+(1/3!-1/4!)+.1/n!-1/(n+1)!
=1/1!-1/(n+1)!
=1-1/(n+1)!
属于裂项求和的方法
n/(n+1)!=[(n+1)-1]/(n+1)!=(n+1)/(n+1)!-1/(n+1)!=1/n!-1/(n+1)!
∴ Sn=1/2!+2/3!+3/4!+.+n/(n+1)!
=(1/1!-1/2!)+(1/2!-1/3!)+(1/3!-1/4!)+.1/n!-1/(n+1)!
=1/1!-1/(n+1)!
=1-1/(n+1)!