已知函数f(x)=2(a-1)ln(x-1)+x-(4a-2)lnx,其中实数a为常数.

1个回答

  • (1)当a=2时,f(x)=2ln(x-1)+x-6lnx,∴ f ′ (x)=

    2

    x-1 +1-

    6

    x =

    (x-2)(x-3)

    x(x-1) ,

    又∵x>0,x-1>0,∴当2<x<3时,f′(x)<0,∴函数f(x)的单调递减区间为(2,3).(6分)

    (2)∵y=f(e x)=2(a-1)ln(e x-1)+e x-(4a-2)lne x,∴ y ′ =

    2(a-1) e x

    e x -1 + e x -(4a-2)=

    ( e x -2)[ e x -(2a-1)]

    e x -1 ,

    由题意知,y′=0有两解.

    又e x-1>0,∴2a-1>1,∴a>1,(9分)

    当2a-1>2时,y=f(e x)在(0,ln2),(ln(2a-1),+∞)上单调递增,

    在(ln2,ln(2a-1))单调递减,∴x 1=ln2,x 2=ln(2a-1),∵x 2-x 1>ln2,∴ a>

    5

    2 ,(12分)

    当1<2a-1<2时,y=f(e x)在(0,ln(2a-1)),(ln2,+∞)上单调递增,在(ln(2a-1),ln2)单调递减,∴x 1=ln(2a-1),x 2=ln2,∵x 2-x 1>ln2,∴a<1,舍去,

    当2a-1=2时,无极值点,舍去,∴ a>

    5

    2 .(15分)