解题思路:根据题意,长方形的面积=长×宽,平行四边形的面积=底×高,可假设长方形的长等于平行四边形的底,长方形的宽等于平行四边形的一条斜边,那么长方形的宽一定大于平行四边形的高,所以长方形的面积大于平行四边形的面积;据此判断.
如图所示:
长方形的面积=长×宽,
平行四边形的面积=底×高,
可假设长方形的长=平行四边形的底,
长方形的宽=平行四边形的一条斜边,
那么长方形的宽>平行四边形的高,
所以长×宽>底×高,
则长方形的面积>平行四边形的面积,
故选:A.
点评:
本题考点: 面积及面积的大小比较.
考点点评: 此题主要考查的是长方形的面积公式和平行四边形的面积公式的灵活应用.