3.6题积分怎么算?怎么拆分

2个回答

  • 这个题是个选择题,如果考试碰到你就求导验证,此答案选B,如果直接硬做,这4分不要也罢!

    1/(x³ + 1) dx = ∫ 1/[(x + 1)(x² - x + 1)] dx

    = ∫ A/(x + 1) dx + ∫ (Bx + C)/(x² - x + 1) dx

    1 = A(x² - x + 1) + (Bx + C)(x + 1) = Ax² - Ax + A + Bx² + Cx + Bx + C

    1 = (A + B)x² + (- A + B + C)x + (A + C)

    { A + B = 0

    { - A + B + C = 0

    { A + C = 1

    (A + B) - (- A + B + C) = 0 ==> { 2A - C = 0

    {A + C = 1

    (2A - C) + (A + C) = 1 ==> 3A = 1 ==> A = 1/3

    B = - 1/3,C = 2/3

    原式 = (1/3)∫ dx/(x + 1) - (1/3)∫ (x - 2)/(x² - x + 1) dx

    = (1/3)∫ d(x + 1)/(x + 1) - (1/3)∫ [(2x - 1)/2 - 3/2]/(x² - x + 1) dx

    = (1/3)ln(x + 1) - (1/6)∫ d(x² - x + 1)/(x² - x +1) + (1/2)∫ d(x - 1/2)/[(x - 1/2)² + 3/4]

    = (1/3)ln(x + 1) - (1/6)ln(x² - x + 1) + (1/2)(2/√3)arctan[(x - 1/2) * 2/√3] + C

    =(1/6)ln[(x² +1)²/(x² - x + 1)] + (1/√3)arctan(2x/√3 - 1/√3) + C

    因此答案选B