设函数f(x)在[-a,a]上连续∫(-a到a)f(x)dx
2个回答
没说f(x)是什么函数
则设f(x)的一个原函数是F(x)
则原式=F(a)-F(-a)
相关问题
设函数f(x)在对称区间【-a,a】上连续,证明∫(-a,a)f(x)dx=∫(0,a)[f(x)+f(-x)]dx
设函数f(x)在[a,b]上连续,∫[a,b]f(x)dx=∫ [a,b]xf(x)dx=0
设f(x)在[a,b]上连续,且∫(a到b)f(x)dx=1,求∫(a到b)f(a+b-x)dx.
设函数f(x) 在区间( -a ,a)上连续,证明 f 上a 下 0 f(x)dx= f 上a 下 0 (f (x) +
设 函数f(x)在区间(a b ) 上连续,则d /dx 求∫ b 上 a下 f(x) dx
设函数f(x)连续 (1)证明:∫上a下-af(x)dx=1/2∫上a下-a[f(x)+f(-x)
设f(x)在区间 [a,b]上连续,证明1/(b-a)∫f(x)dx≤(1/(b-a)∫f²(x)dx)^
求定积分做法设f(x)在区间[a,b]上连续,且f(x)>0,证明在a到b的积分f(x)dx.dx/f(x)>=(b-a
设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且∫(a,b)f(x)dx=f(b)(b-a).证明:在(a,
设函数f(x)在[a,b]上有连续的导函数,且f(a)=f(b)=0,∫(b,a) [f(x)^2]dx=1,则∫(b,