解题思路:(1)①可连接OP,PM,设AC与OM交于N,那么在直角三角形OPN中,OP=5,ON=m=4.因此PN=3,AN=BN=2,CN=PC+PN=8,因此A,B,C的坐标分别为(4,2),(4,-2),(4,-8).同理过P作OD的垂线,根据垂径定理即可得出OD=2PN=6,因此D点的坐标为(0,-6).
②可用顶点式二次函数通式来设抛物线的解析式,然后将D点的坐标代入即可求出抛物线的解析式.根据圆和抛物线的对称性可知:E点和D点关于抛物线的对称轴x=4对称,因此根据D的坐标即可求出E点的坐标.
③可用待定系数法求出直线AD的解析式,然后联立抛物线的解析式即可判断出直线AD与抛物线是否有另外的交点.
(2)如果以B、C、D、E为顶点的四边形组成菱形,那么这个四边形的对角线互相垂直平分,如果设BC,DE的交点为F,那么BF=CF,可用A点的纵坐标即AN的长表示出BF和CF由此可求出A点的纵坐标,进而可在直角三角形OAN中用勾股定理求出m的值.
(1)①B(4,-2)C(4,-8)D(0,-6)
②设抛物线的解析式为y=a(x-4)2-2,已知抛物线过D点,
因此-6=a(x-4)2-2,
解得a=-[1/4].
抛物线的函数关系式为:y=-[1/4](x-4)2-2.
根据对称可知:E(8,-6)
③直线AD:y=2x-6,
把y=2x-6代入y=-[1/4](x-4)2-2,
整理得:x2=0,得x1=x2=0
∴除D点外,直线AD与②中的抛物线无其它公共点.
(2)设A(m,h),则B的坐标为(m,-h),C的坐标为(m,h-10).
假设以B、C、D、E为顶点的四边形组成菱形,则DE与BC互相垂直平分,
设DE与BC相交于点F,
∵OM=DE,OM∥DE,AC⊥OM,
∴CF=[1/2]AB,即BF=CF=[1/2]AB.
∴10-3h=h,
即h=[5/2]
∴AB=5
∴B、P两点重合
∴m=
OP2−h2=
52−(
5
2)2=
5
2
3.
点评:
本题考点: 二次函数综合题.
考点点评: 本题着重考查了待定系数法求二次函数解析式、垂径定理、勾股定理、菱形的性质等重要知识点,综合性强,考查学生数形结合的数学思想方法.