第一题:
(1) tan(A/2)+cot(A/2)=1/(sinA/2*cosA/2)=2/sinA=10/3,=>sinA=3/5;
∵sinC=sin(A+B)>0 => cosA>-1/4 ∴cosA=4/5;cosB=5/13 sinB=12/13; cos(A-B)=cosAcosB+sinAsinB=56/65;
(2) ∵cos(A-B)>0 cosA>cosB ∴A
第一题:
(1) tan(A/2)+cot(A/2)=1/(sinA/2*cosA/2)=2/sinA=10/3,=>sinA=3/5;
∵sinC=sin(A+B)>0 => cosA>-1/4 ∴cosA=4/5;cosB=5/13 sinB=12/13; cos(A-B)=cosAcosB+sinAsinB=56/65;
(2) ∵cos(A-B)>0 cosA>cosB ∴A