设O是直角坐标系的原点,向量OA=(2,3),向量OB=(4,-1),在x轴上求一点P,使向量AP与向量BP的数量积最

1个回答

  • Let P be (x.0) ,as P is on x-axis

    AP .BP

    = (-OA + OP) .( -OB + OP)

    =(x-2,-3) .(x-4,1)

    =(x-2)(x-4) - 3

    Let S = AP .BP

    S' = (x-2) + (x-4) = 0

    x = 3

    S'' = 2 > 0 (min)

    P(3,0 ) #

    for x=3

    AP = (1,-3),BP=(-1,1)

    AP .BP = (x-2)(x-4) - 3

    = -4

    also

    AP .BP = |AP||BP|cos∠APB

    -4 = 2 √5 cos∠APB

    cos∠APB = -2/√5

    ∠APB = arc cos ( -2√5/5)