由题意知
(1)∵q≠1,
∴S 2=
a 1 (1- q 2 )
1-q ,S 4=
a 1 (1- q 4 )
1-q ,
∴5(1-q 2)=4(1-q 4).
∵q>0,
∴q=
1
2 .
(2)∵S n=
a 1 (1- q n )
1-q =2a 1-2a 1(
1
2 ) n,
∴b n=q+q n+S n=2a 1+
1
2 +(1-2a 1)(
1
2 ) n.
若{b n}是等比数列,则b 1=a 1+1,b 2=
3
2 a 1+
3
4 ,b 3=
7
4 a 1+
5
8 ,
由b 2 2=b 1b 2,解得8a 1 2-2a 1-1=0,所以a 1=-
1
4 ,或a 1=
1
2 .
①当a 1=
1
2 时,b n=
3
2 ,
∴数列{b n}是等比数列.
②当a 1=-
1
4 时,b n=
3
2 (
1
2 ) n.
∵
b n+
b n =
3
2 (
1
2 ) n+1
3
2 (
1
2 ) n =
1
2 ,
∴数列{b n}是等比数列.