解题思路:由AD=AC,BC=BE得,∠ACD=∠ADC,∠BCE=∠BEC,从而可分别用含有∠A,∠B的式子表示出∠ACD,∠BCE,已知∠ACD+∠BCE-∠DCE=90°,则不难求解.
∵AD=AC,BC=BE,∴∠ACD=∠ADC,∠BCE=∠BEC,∴∠ACD=(180°-∠A)÷2①,∠BCE=(180°-∠B)÷2②,∵∠A+∠B=90°,∴①+②-∠DCE得,∠ACD+∠BCE-∠DCE=180°-(∠A+∠B)÷2-∠DCE=180°-45°-∠DCE=135°-...
点评:
本题考点: 等腰三角形的性质;三角形内角和定理.
考点点评: 此题主要考查等腰三角形的性质及三角形内角和定理的综合运用.