(2007•海南)设函数f(x)=ln(2x+3)+x2

1个回答

  • 解题思路:(1)先根据对数定义求出函数的定义域,然后令f′(x)=0求出函数的稳定点,当导函数大于0得到函数的增区间,当导函数小于0得到函数的减区间,即可得到函数的单调区间;

    (2)根据(1)知f(x)在区间[-[3/4],[1/4]]的最小值为f(-[1/2])求出得到函数的最小值,又因为f(-[3/4])-f([1/4])<0,得到

    f(x)在区间[-[3/4],[1/4]]的最大值为f([1/4])求出得到函数的最大值.

    f(x)的定义域为(-[3/2],+∞)

    (1)f′(x)=[2/2x+3]+2x=

    4x2+6x+2

    2x+3

    当-[3/2]<x<-1时,f′(x)>0;

    当-1<x<-[1/2]时,f′(x)<0;

    当x>-[1/2]时,f′(x)>0

    从而,f(x)在区间(-[3/2],-1),(-[1/2],+∞)上单调递增,在区间(-1,-[1/2])上单调递减

    (2)由(1)知f(x)在区间[-[3/4],[1/4]]的最小值为f(-[1/2])=ln2+[1/4]

    又f(-[3/4])-f([1/4])=ln[3/2]+[9/16]-ln[7/2]-[1/16]

    =ln[3/7]+[1/2]=[1/2](1-ln[49/9])<0

    所以f(x)在区间[-[3/4],[1/4]]的最大值为f([1/4])=[1/16]+ln[7/2].

    点评:

    本题考点: 利用导数研究函数的单调性;利用导数求闭区间上函数的最值.

    考点点评: 考查学生利用导数研究函数单调性的能力,利用导数求函数在闭区间上极值的能力.