w的虚部减去其实部所得差为二分之三
设w=xi+x-2/3
将z=(a-i)/(1-i)代入 w=z(z+i)得w=(a-i)(a+1)/(1-i)^2
xi+x-2/3=(a-i)(a+1)/(1-i)^2
整理得(4/3-2x)i+2x=a^2+a-(1+a)i
因为a>0,所以a=1
得x=5/3
|w|=√[x^2+(x-2/3)^2]=三分之根号下34
w的虚部减去其实部所得差为二分之三
设w=xi+x-2/3
将z=(a-i)/(1-i)代入 w=z(z+i)得w=(a-i)(a+1)/(1-i)^2
xi+x-2/3=(a-i)(a+1)/(1-i)^2
整理得(4/3-2x)i+2x=a^2+a-(1+a)i
因为a>0,所以a=1
得x=5/3
|w|=√[x^2+(x-2/3)^2]=三分之根号下34