已知函数f(x)=sin(wx+π/3 )(x∈R),且f(π/6 )=1

1个回答

  • 1、f(π/6 )=sin(πw/6+π/3 )=1

    所以πw/6+π/3=2kπ +π/2 解得w=12k+1

    所以当k=0时,w取最小正值,此时w=1

    f(x)=sin(x+π/3 )

    2、利用两角差的正切公式,和两角差的余弦公式.不需要求出具体的值,一楼给的方法太麻烦了

    a∈( π/6,2π/3),f(a)=sin(a+π/3)=3/5

    a+π/3∈( π/2,π),所以cos(a+π/3)=-4/5

    .b∈(-5π/6,- π/3 ).f(b)= sin(b+π/3)=-4/5.

    b+π/3∈( -π/2,0),所以cos(a+π/3)=3/5

    tana=tan[(a+π/3)-π/3]=[-3/4 -√3 ]/[1-3√3 /4]=. =(48+25√3)/11

    cos(a-b)=cos[(a+π/3)-(b+π/3)]=cos(a+π/3)cos(b+π/3) +sin(a+π/3)sin(b+π/3)=. =-24/25