解题思路:(1)利用平行线和角平分线的性质,证得等角,利用等角对等边这一判定定理证明△AFD为等腰三角形.
(2)AD是角平分线,易证∠GFD=30°,又△GFD是直角三角形,所以30°锐角所对的直角边等于斜边的一半这一性质,求出DE=5.
(1)证明:如图所示,
∵DF∥AC,
∴∠3=∠2,
∵AD是角平分线,
∴∠1=∠2,
∴∠1=∠3,
∴FD=FA,
∴△AFD为等腰三角形.
(2)过D作DG⊥AB,垂足为G,
∵∠1=∠2=[1/2]∠BAC,∠BAC=30°,
∴∠1=15°,
又∵∠1=∠3,
∴∠1=∠3=15°,
∴∠GFD=∠1+∠3=15°+15°=30°,
在Rt△FDG中,DF=10cm,∠GFD=30°,
∴DG=5cm,
∵AD为∠BAC的平分线,DE⊥AC,DG⊥AB,
∴DE=DG=5cm.
点评:
本题考点: 等腰三角形的判定;平行线的性质;角平分线的性质.
考点点评: 本题考查了角平分线和平行线的性质及等腰三角形的判定;正确作出辅助线、计算出各角的度数是解答本题的关键.