因为,根据已知得,PA垂直于AO,AM垂直PO,所以|MO|*|PO|=|OA|^2=1.令P为(X.,Y.),令M为(x,y).那么x^2+y^2=1/(X.^2+Y.^2),因p在椭圆(x^2/9)+(y^2/4)=1上,所以x^2+y^2=[(X.^2/9)+(Y.^2/4)]/(X.^2+Y.^2).因为OMP三点共线,所以原式变为x^2+y^2=[(x^2/9)+(y^2/4)]/(x^2+y^2),最终得M的轨迹方程为(x^2+y^2)^2=x^2/9+y^2/4
22.(14分)过椭圆(x^2/9)+(y^2/4)=1 上任意一点P向圆x^2+y^2=1引切线PA、PB,切点分别为
1个回答
相关问题
-
过椭圆x²/9+y²/4=1上任意一点P向圆x²+y²=1引切线PA、PB,切点
-
过椭圆x2/5+y2/4=1上的动点P,引圆O:x2+y2=4的两条切线PA、PB,切点分别为A、B,
-
椭圆C,x^2/8+y^2/4=1上一点P(x0,y0)向圆O,x^2+y^2=4引两条切线PA,PB,A,B为切线,
-
过椭圆X的平方除以9加上Y的平方除以4等于1上任意一点P向圆X的平方加上Y的平方等于1引切线PA.PB,切点分别是A.B
-
已知圆o:X^2+Y^2=1,点p是椭圆c:x^2/4+Y^2=1上一点,过点p作圆o的两条切线PA,PB,A,B为切点
-
已知圆O:x2+y2=1,圆C:(x-2)2+(y-4)2=1.在两圆外一点P(a,b)引两圆切线PA、PB,切点分别为
-
已知圆O:x2+y2=1,圆C:(x-2)2+(y-4)2=1.在两圆外一点P(a,b)引两圆切线PA、PB,切点分别为
-
已知圆O:x2+y2=1,圆C:(x-2)2+(y-4)2=1.在两圆外一点P(a,b)引两圆切线PA、PB,切点分别为
-
已知椭圆x2/a2+y2/b2=1(a>b>0)和圆O:x2+y2=b2,过椭圆上一点P引圆O的两条切线,切点分别为A,
-
过点P(2,0)作圆x2+(y-2)2=1的切线,切点分别为A,B,求向量PA·PB=