sin(a+b)=1/2
sinacosb+cosasinb=1/2.[1]
sin(a-b)=1/3
sinacosb-cosasinb=1/3.[2]
[1]+[2]:sinacosb=(1/2+1/3)/2=5/12
[1]-[2]:cosasinb=(1/2-1/3)/2=1/12
以上二式相除得:tana*cotb=(5/12)/(1/12)=5
故:log根号5(tanacotb)=log根号5(5)=log根号5(根号5)^2=2
sin(a+b)=1/2
sinacosb+cosasinb=1/2.[1]
sin(a-b)=1/3
sinacosb-cosasinb=1/3.[2]
[1]+[2]:sinacosb=(1/2+1/3)/2=5/12
[1]-[2]:cosasinb=(1/2-1/3)/2=1/12
以上二式相除得:tana*cotb=(5/12)/(1/12)=5
故:log根号5(tanacotb)=log根号5(5)=log根号5(根号5)^2=2