14. 利用余弦公式 c²=a²+b²-2abCosC
A+C=2B,∴A+B+C=3B=180°,∴B=60°
∴b²=a²+c²-2*a*c*cos60°
3 = 1 + c² - c, c²-c-2=0, (c+1)(c-2)=0
解得: c=2 (c=-1舍去)
∴CosC = (a²+b²-c²)/(2*a*b)
=(1+3-4)/(2*1*√3)
=0
则sinC = 1-cos²C=1
16. b²=a²+c²-2*a*c*cosπ/6
b²=4+12-2*2*2√3 * √3/2=4
b=2