已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC

1个回答

  • ∵BE平分∠ABC

    ∴∠ABE=∠CBE=1/2∠ABC=22.5

    ∵BE⊥AC

    ∴∠BEC=∠BEA=90

    ∴∠A=∠ACB=67.5

    ∵∠ABC=45,∠CDB=90

    ∴等腰Rt⊿BCD

    ∴BD=CD,∠BCD=45

    ∴∠ACD=∠ACB-∠BCD=22.5

    ∵∠BDC=∠ADC=90

    ∠ABE=∠ACD=22.5

    BD=CD

    ∴⊿BDF≌⊿CDA

    ∴BF=AC

    ∵BE⊥AC

    AB=BC

    ∴AE=CE

    ∵BF=AC

    ∴CE=1/2AC=1/2BF

    连接CG

    ∵H是BC中点

    ∴DH是BC的垂直平分线

    ∴BG=CG

    在△CEG中,CG>CE

    ∴BG>CE