数列{an}的前n项和为Sn,已知Sn+an=-n(n∈N)恒成立.①求数列an的通项公式.②bn=ln(an+1),求

5个回答

  • Sn+an=-n

    a1+a1=-1,a1=-1/2

    n>=2:

    S(n-1)+a(n-1)=-(n-1)

    二式相减得到:an+an-a(n-1)=-1

    2an=a(n-1)-1

    2(an+1)=a(n-1)+1

    即数列{an+1}是以a1+1=1/2为首项,1/2为公比的等比数列,则有an+1=(1/2)^n

    即有an=(1/2)^n-1

    (2)bn=ln(an+1)=ln(1/2)^n=nln1/2

    cn=anbn=[(1/2)^n-1]nln1/2=ln1/2*n*(1/2)^n-nln1/2

    Tn=ln1/2[1*1/2+2*(1/2)^2+3*(1/2)^3+...+n*(1/2)^n]-ln1/2*(1+2+...+n)

    设An=1*1/2+2*(1/2)^2+3*(1/2)^3+,.+n*(1/2)^n

    1/2An=1*(1/2)^2+2*(1/2)^3+...+n*(1/2)^(n+1)

    1/2An=An-1/2An=1/2+(1/2)^2+(1/2)^3+...+(1/2)^n-n*(1/2)^(n+1)=1/2*(1-1/2^n)/(1-1/2)-n*1/2^n*1/2

    故An=2-2*1/2^n-n*1/2^n

    故有Tn=ln1/2[2-(2+n)*1/2^n]-ln1/2*(1+n)n/2