存在符合条件的二次函数.
设f(x)=ax 2+bx+c,则当k=1,2,3时有:
f(5)=25a+5b+c=55 ①; f(55)=3025a+55a+c=5555②; f(555)=308025a+555b+c=555555③.
联立①、②、③,解得a=
9
5 ,b=2,c=0.
于是,f(x)=
9
5 x 2+2x.
下面证明二次函数f(x)=
9
5 x 2+2x符合条件.
因为
=5(1+10+100++10 k-1)=
5
9 (10 k-1),
同理:
=
5
9 (10 2k-1);
=f(
5
9 (10 k-1))=
9
5 [
5
9 ( 10 k -1)] 2 +2×
5
9 (10 k-1)
=
5
9 (10 k-1) 2+2×
5
9 (10 k-1)=
5
9 (10 k-1)(10 k+1)=
5
9 (10 2k-1)=
∴所求的二次函数 f(x)=
9
5 x 2+2x符合条件.