证明:(1)连接OC,∵OA=OC ∴∠OAC=∠OCA,
∵CA是∠BAF的角平分线,
∴∠OAC=∠FAC
∴∠FAC=∠OCA,
∴OC∥AD.
∵CD⊥AF, ∴CD⊥OC,
即DC是⊙O的切线.
(2)连接BC,在Rt△ACB中,CM⊥AB,∴CM 2=AM
MB.
又∵DC是⊙O的切线,∴DC 2=DFDA.
∵∠MAC=∠DAC,∠D=∠AMC,AC=AC
∴△AMC≌△ADC,∴DC=CM,
∴AM
MB=DF
DA
证明:(1)连接OC,∵OA=OC ∴∠OAC=∠OCA,
∵CA是∠BAF的角平分线,
∴∠OAC=∠FAC
∴∠FAC=∠OCA,
∴OC∥AD.
∵CD⊥AF, ∴CD⊥OC,
即DC是⊙O的切线.
(2)连接BC,在Rt△ACB中,CM⊥AB,∴CM 2=AM
MB.
又∵DC是⊙O的切线,∴DC 2=DFDA.
∵∠MAC=∠DAC,∠D=∠AMC,AC=AC
∴△AMC≌△ADC,∴DC=CM,
∴AM
MB=DF
DA